| 
        
          | 
              
                | T O P I C    R E V I E W |  
                | dadude1105 | Posted - 05/28/2014 : 07:07:17 AM Hello, I need to plot an integral from T to H=const on the y-axis and T on the x-axis. So the integral is regulated by T. How can I do this?
 
 The next step would then be to divide the Integrale by a function regulatet by T.
 So I need to plot this against 1/T
 
  
 |  
                | 2   L A T E S T    R E P L I E S    (Newest First) |  
                | Hideo Fujii | Posted - 05/29/2014 : 12:01:21 PM Hi,
 
 If you like a non-script way, you can simply use "Analysis: Math: Integrate" menu (as Integral[T:A]f(x)dx = -Integral[A:T]f(x)dx),
 combined with the Set Column Values tool. See the sample screen. Here, col(B) is your function values (e.g., sqrt(x) here),
 col(C) is the integration result from Analysis menu. col(D) is the result of the Set Column Values tool to calculate (-1)*col(C)/col(B).
 Now you can simply plot col(C) (or col(D)) vs. A(X). Does it work for you?
 
 
  
 --Hideo Fujii
 OriginLab
 |  
                | lkb0221 | Posted - 05/29/2014 : 10:12:24 AM Hi,
 
 Please try the following LT script:
 
 // Script Start
 range rT = col(A);	// assume col(A) contains the T values
 range rResult = col(B);	// This is where to put the result
 double A = 10;	// This is the A value, which is const
 
 //Define f(x)
 function double TestEq(double x)
 {
 return 1 + 2 * x + 3 * x^2;
 }
 
 // Calculate the result column
 for (int ii = 1; ii <= rT.GetSize(); ii++)
 {
 double currentT = rT[ii];
 rResult[ii] = Integral(TestEq, currentT, A); // Calculate the integral of f(H)
 rResult[ii] = rResult[ii] / TestEq(currentT); // Devided by f(T)
 }
 
 // Plot them
 plotxy iy:=(rT,rResult);
 
 // Script End
 |  |  
 |