T O P I C R E V I E W |
shag |
Posted - 10/06/2015 : 08:26:43 AM Origin Ver. and Service Release (Select Help-->About Origin): v8.0724 Operating System: Windows 8
Hi, I have following expression, having 2 independent variables (Df and J). I want to minimize the expression for the values of Df and J. Please let me know how I can do it with origin. Thanks
Error = 1/13 (0.0487733 + (-1.30647 + ( 1.03448 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99685 + E^(2.49694*10^20 (-6.31797*10^-24 - Df)) + E^( 2.49694*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-1.39208 + ( 1.07143 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99674 + E^(2.58612*10^20 (-6.31797*10^-24 - Df)) + E^( 2.58612*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-1.48996 + ( 1.11111 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99662 + E^(2.6819*10^20 (-6.31797*10^-24 - Df)) + E^( 2.6819*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-1.60422 + ( 1.15385 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99649 + E^(2.78505*10^20 (-6.31797*10^-24 - Df)) + E^( 2.78505*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-1.71847 + ( 1.2 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99635 + E^(2.89645*10^20 (-6.31797*10^-24 - Df)) + E^( 2.89645*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-1.845 + ( 1.25 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99619 + E^(3.01714*10^20 (-6.31797*10^-24 - Df)) + E^( 3.01714*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-1.97151 + ( 1.30435 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99603 + E^(3.14832*10^20 (-6.31797*10^-24 - Df)) + E^( 3.14832*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-2.13891 + ( 1.36364 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99585 + E^(3.29142*10^20 (-6.31797*10^-24 - Df)) + E^( 3.29142*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-2.29816 + ( 1.42857 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99565 + E^(3.44816*10^20 (-6.31797*10^-24 - Df)) + E^( 3.44816*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-2.48194 + ( 1.5 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99544 + E^(3.62056*10^20 (-6.31797*10^-24 - Df)) + E^( 3.62056*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-2.69434 + ( 1.57895 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.9952 + E^(3.81112*10^20 (-6.31797*10^-24 - Df)) + E^( 3.81112*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2 + (-2.9313 + ( 1.66667 (1.99695 + E^(2.41371*10^20 (-6.31797*10^-24 - Df)) + E^( 2.41371*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))/( 1.99493 + E^(4.02285*10^20 (-6.31797*10^-24 - Df)) + E^( 4.02285*10^20 (-6.31797*10^-24 - Df/3 - 2 J))))^2) |
2 L A T E S T R E P L I E S (Newest First) |
cc261 |
Posted - 11/26/2015 : 07:52:32 AM The following results are maybe you want:
Objective Function (Min.): 0.362590571767212 df: 4.29663137420979E-21 j: 1.43221045790878E-21 |
lkb0221 |
Posted - 10/06/2015 : 09:49:01 AM Use a range of Df and J to calculate Error, you will get a list of XYZ, then use 2D interpolate to find the minimum. Btw, I don't think Origin8 can do that... |