The Origin Forum
File Exchange
Try Origin for Free
The Origin Forum
Home | Profile | Register | Active Topics | Members | Search | FAQ | Send File to Tech support
 All Forums
 Origin Forum
 Origin Forum
 deconvoluting a fluorescent spectrum into two.

Note: You must be registered in order to post a reply.
To register, click here. Registration is FREE!

Screensize:
UserName:
Password:
Anti-Spam Code:
Format Mode:
Format: BoldItalicizedUnderlineStrikethrough Align LeftCenteredAlign Right Horizontal Rule Insert HyperlinkUpload FileInsert Image Insert CodeInsert QuoteInsert List
   
Message:

* HTML is OFF
* Forum Code is ON
Smilies
Smile [:)] Big Smile [:D] Cool [8D] Blush [:I]
Tongue [:P] Evil [):] Wink [;)] Clown [:o)]
Black Eye [B)] Eight Ball [8] Frown [:(] Shy [8)]
Shocked [:0] Angry [:(!] Dead [xx(] Sleepy [|)]
Kisses [:X] Approve [^] Disapprove [V] Question [?]

 
Check here to subscribe to this topic.
   

T O P I C    R E V I E W
lc165 Posted - 04/28/2004 : 05:20:03 AM
I have a system with two fluorescent components and have recorded the fluorescent emission spectra of the two of them on their own and in a mixture. I’d like to resolve the mixture’s spectrum into two separate ones, each one accounting for the emission due to one and another of my components. I think this is done with “deconvoluting” the total spectrum. However, I haven’t got a classic Time(X), Signal(Y) and Response(Y) columns system.
I know that the Response dataset must be adjusted to have an odd
number of points such that twice the number of points is less than
the number of points in the signal dataset. And that this is the signal we will
try to remove (using deconvolution). But, I don’t want to “remove” any signal nor sacrifice half of my data points of any component.
Can I solve my problem without script writing? And how I can perform
the de-convolution?
Many thanks,
1   L A T E S T    R E P L I E S    (Newest First)
easwar Posted - 04/28/2004 : 10:02:57 AM
Hello,

Since you already have the individual component spectra and the mixture spectrum, you could just perform a fit to the mixture using the individual component spectra as the independent variables.

The following article from our knowledge base describes how to do this. Look at Example 2 in the article:
http://www.originlab.com/index.aspx?s=9&pid=434

For this method to work well, you may also need the individual component spectra to be normalized (for example, acquired for the same amount of time), and also there are no variations in x offset between the individual components and the mixture (spectra are well calibrated).

Easwar
OriginLab



The Origin Forum © 2020 Originlab Corporation Go To Top Of Page
Snitz Forums 2000