| Author |
Topic  |
|
|
looker22
Burkina Faso
Posts |
Posted - 02/26/2008 : 02:04:22 AM
|
Origin Version (Select Help-->About Origin): 8.0 Operating System:Windows Vista
Help!I need to curve fit my data to the Arrhenius model.I am plotting my graph for Integrated PL Intensity vs 1/T.

Dependent variables:IT Independent variables:T (Plotting 1/T thus set as T in function) Parameters: I0,C1,Ea1,C2,Ea2 k = 1.38*10^-23 (Boltzmann constant)
Function:IT = I0 /( 1 + C1*exp(-Ea1*T/(1.38*10^(-23)))+ C2*exp(-Ea2*T/(1.38*10^(-23))))
Compiled done correctly.
X-axis values: 0.23256 0.1 0.05 0.03333 0.025 0.02 0.01667 0.01429 0.0125 0.01111 0.01 0.00833 0.00714 0.00625 0.00556 0.005 0.00455 0.00417 0.00385 0.00357 0.00333
Y-Axis Values: 31104.73877 29000.68793 21984.24408 12966.13362 7674.22404 4686.32585 3223.29419 2360.23168 1892.84186 1540.49311 1321.75368 1010.63186 789.76196 733.07144 667.57381 591.35511 515.70761 506.03149 404.55926 362.06002 350.56805
Instead of getting any nice exponential graph, i got a straight line? I tried various parameters but they didnt provide the proper curve fit. Can any smart soul pls help me out here? Ur help will be truly truly appreiciated! thx
|
|
|
jnikolaou
Greece
Posts |
Posted - 02/26/2008 : 12:15:24 PM
|
| Do you mean the line that is parallel with x axis? |
 |
|
|
larry_lan
China
Posts |
Posted - 02/27/2008 : 04:57:59 AM
|
Hi:
First of all, please avoid using parameter names like t, it may cause some compile error.
The main problem in your function is, this model is over parameterized. Actually, most of exponential model are over-parameterized. So there may be multiple solutions. In over-parameterized model, the fitted result strongly depends on the initial values.
For example, I can fit the curve using these initial values:
I0 = 35000; C1 = 1; Ea1 = 1E-25; C2 = 1; Ea2 = 1E-25;
I am not sure whether the fitted result have practical meanings, may be you can find some empirical value from some papers?
Thanks Larry OriginLab Technical Services |
 |
|
|
looker22
Burkina Faso
Posts |
Posted - 02/27/2008 : 08:44:59 AM
|
larry_lan! Thx so much for ur help!!! You're superb
First of all, please avoid using parameter names like t, it may cause some compile error.
Note taken*
My FYP supervisor gave me these values in some paper: C1=5.66, E1A=8.2meV C2=5276, E2A=42.7meV
which was why i got a straight line...
And with ur parameters i managed to Curve fit it Very smoothly! Just curious, how did u manage to come up with those parameters?
Because earlier on i was the same dude that posted the thread on how to curve fit with Varshni's equation. the curve fit i got were not very smooth.
|
 |
|
|
larry_lan
China
Posts |
Posted - 02/27/2008 : 09:34:52 AM
|
Take a simple model as example, when there is a asymptote:

The blue part in the follow function should close to zero. 

Thanks Larry OriginLab Technical Services |
 |
|
|
looker22
Burkina Faso
Posts |
Posted - 02/27/2008 : 10:14:32 AM
|
Wow Thx again for your fast reply! Praying that i did the right thing cause tml i'm gonna face the wrath from my Sup... =/ thx! Hope to seek help from you in future when i need it! cheers  |
 |
|
|
suikou
Brazil
Posts |
Posted - 02/27/2008 : 9:52:23 PM
|
Ops, it should be a very hard task for most of people to guess the proper initial start values like larry_lan. Luckily, an optimization software package, 1stOpt (or Auto2Fit), let you forget the headache job of estimating initial start values. For looker22s problem here, with random start values, 1stOpt will get a unique result every time:
Root of Mean Square Error (RMSE): 143.597802094357 Correlation Coef. (R): 0.999893430549993 R-Square: 0.999786872457034
Parameters Best Estimate ---------- ------------- i0 31085.2336283046 c1 89.9890500975424 ea1 2.01270454996536E-21 c2 1.94021450157707 ea2 4.61785752687395E-22
|
 |
|
|
larry_lan
China
Posts |
Posted - 02/28/2008 : 04:23:54 AM
|
The reason 1stOpt generate unique results is that they use some strategy/routine to create the initial values. So for a certain model and data, I am not surprise that there is only one set of fitted values.
As I mentioned above, from the mathematical point of view, most of the exponential models are over-parametrized. So there should be infinite solutions. Regression analysis is far beyond finding the largest R^2 value, and the researcher should decide what kind of values are practical/physical meaningful. So empirical values should be considered first.
It's a good feature to auto initial the parameters. Automatically or manually, I think it's the two sides of the coin.
Thanks Larry OriginLab Technical Services
Edited by - larry_lan on 02/28/2008 04:27:19 AM |
 |
|
|
suikou
Brazil
Posts |
Posted - 02/28/2008 : 09:34:54 AM
|
| Is there any planning for the next Origin version to add the function of "auto initial the parameters"? With the only "one sides of the coin", Origin is, in personal opinion, far behind of AutoFit in the field of nonlinear regression. |
 |
|
|
looker22
Burkina Faso
Posts |
Posted - 03/06/2008 : 12:12:21 PM
|
Hi guys once again i need some help >.<
Btw suikou, any other software to recommend that is free other than 1stOpt and Auto2Fit. i think i need the initial parameters for the next few sets of data that i'm curve fitting..Btw i'm using windows vista OS.
Function is given in OriginPro8: Exponential >> ExpDecay1>>
y = y0 + A1*exp(-(x-x0)/t1)
My supervisor asked me to set these parameters however i cant seem to curve fit them nicely despite playing around with the values. Y0=10 X0=260 A=10 t0=1
1 set of data==>
X-axis values: 0 2.363 4.726 7.089 9.452 11.815 14.178 16.541 18.904 21.267 23.63 25.993 28.356 30.719 33.082 35.445 37.808 40.171 42.535 44.898 47.261 49.624 51.987 54.35 56.713 59.076 61.439 63.802 66.165 68.528 70.891 73.254 75.617 77.98 80.343 82.706 85.069 87.432 89.795 92.158 94.521 96.884 99.247 101.61 103.973 106.336 108.699 111.062 113.425 115.788 118.151 120.514 122.877 125.241 127.604 129.967 132.33 134.693 137.056 139.419 141.782 144.145 146.508 148.871 151.234 153.597 155.96 158.323 160.686 163.049 165.412 167.775 170.138 172.501 174.864 177.227 179.59 181.953 184.316 186.679 189.042 191.405 193.768 196.131 198.494 200.857 203.22 205.584 207.947 210.31 212.673 215.036 217.399 219.762 222.125 224.488 226.851 229.214 231.577 233.94 236.303 238.666 241.029 243.392 245.755 248.118 250.481 252.844 255.207 257.57 259.933 262.296 264.659 267.022 269.385 271.748 274.111 276.474 278.837 281.2 283.563 285.926 288.29 290.653 293.016 295.379 297.742 300.105 302.468 304.831 307.194 309.557 311.92 314.283 316.646 319.009 321.372 323.735 326.098 328.461 330.824 333.187 335.55 337.913 340.276 342.639 345.002 347.365 349.728 352.091 354.454 356.817 359.18 361.543 363.906 366.269 368.633 370.996 373.359 375.722 378.085 380.448 382.811 385.174 387.537 389.9 392.263 394.626 396.989 399.352 401.715 404.078 406.441 408.804 411.167 413.53 415.893 418.256 420.619 422.982 425.345 427.708 430.071 432.434 434.797 437.16 439.523 441.886 444.249 446.612 448.975 451.338 453.702 456.065 458.428 460.791 463.154 465.517 467.88 470.243 472.606 474.969 477.332 479.695 482.058 484.421 486.784 489.147 491.51 493.873 496.236 498.599 501 503 506 508 510 513 515 518 520 522 525 527 529 532 534 536 539 541 543 546 548 551 553 555 558 560 562 565 567 569 572 574 577 579 581 584 586 588 591 593 595 598 600 603 605 607 610 612 614 617 619 621 624 626 629 631 633 636 638 640 643 645 647 650 652 655 657 659 662 664 666 669 671 673 676 678 681 683 685 688 690 692 695 697 699 702 704 707 709 711 714 716 718 721 723 725 728 730 733 735 737 740 742 744 747 749 751 754 756 759 761 763 766 768 770 773 775 777 780 782 785 787 789 792 794 796 799 801 803 806 808 811 813 815 818 820 822 825 827 829 832 834 837 839 841 844 846 848 851 853 855 858 860 863 865 867 870 872 874 877 879 881 884 886 888 891 893 896 898 900 903 905 907 910 912 914 917 919 922 924 926 929 931 933 936 938 940 943 945 948 950 952 955 957 959 962 964 966 969 971 974 976 978 981 983 985 988 990 992 995 997 1000 1002 1004 1007 1009 1011 1014 1016 1018 1021 1023 1026 1028 1030 1033 1035 1037 1040 1042 1044 1047 1049 1052 1054 1056 1059 1061 1063 1066 1068 1070 1073 1075 1078 1080 1082 1085 1087 1089 1092 1094 1096 1099 1101 1104 1106 1108 1111 1113 1115 1118 1120 1122 1125 1127 1130 1132
Y-Axis Values:
0 24 23 26 24 25 25 16 40 28 24 20 20 28 18 25 17 25 22 23 19 33 27 26 19 28 19 29 30 24 30 26 20 19 31 22 28 21 30 26 33 29 29 24 33 25 32 23 34 25 35 22 25 23 25 31 32 19 26 32 25 21 27 22 26 35 21 22 29 29 31 22 28 26 28 18 28 32 24 26 30 23 36 35 37 36 60 76 89 137 155 239 330 439 605 754 934 1040 1205 1302 1494 1498 1732 1764 1856 1750 1857 1627 1652 1478 1565 1409 1437 1301 1358 1266 1242 1148 1131 1150 1016 944 955 871 853 788 801 656 674 646 599 571 531 497 456 459 407 383 358 334 292 280 271 259 232 225 217 179 185 210 184 179 150 144 144 139 131 151 119 108 120 139 109 100 106 95 96 95 79 109 94 76 81 81 64 69 62 67 63 68 65 63 61 62 58 57 45 50 54 66 55 57 49 64 48 47 40 54 44 47 49 53 39 46 50 40 45 40 52 46 38 47 42 45 41 47 45 44 38 37 43 48 57 36 40 34 45 44 35 38 32 54 42 33 29 37 31 48 44 27 35 42 37 29 29 28 25 29 39 31 35 33 28 24 27 32 24 26 28 23 26 21 28 35 28 20 32 37 35 23 30 28 39 28 32 27 38 33 36 40 33 30 34 30 34 35 34 32 42 25 27 31 32 35 36 33 35 44 40 25 29 29 31 25 38 34 37 24 27 28 29 27 32 30 31 25 32 28 32 26 24 31 33 24 35 37 32 31 30 29 28 34 40 23 31 31 39 41 34 37 31 20 30 20 41 31 23 27 34 21 25 23 28 18 32 27 29 30 22 28 30 20 26 27 33 37 35 35 30 27 19 26 31 27 31 21 29 32 25 23 37 24 36 18 17 21 24 31 32 22 25 22 20 24 26 25 30 27 36 31 25 29 28 27 31 27 25 35 31 24 27 26 26 26 21 26 37 22 29 17 28 28 43 31 27 41 36 31 33 19 17 21 24 16 29 23 20 22 29 19 23 25 29 32 25 26 32 27 27 31 30 31 25 33 28 24 27 23 24 18 23 31 25 27 24 26 33 34 30 41 18 21 27 30 32 28 27 27 20 0
Edited by - looker22 on 03/06/2008 12:15:45 PM |
 |
|
|
larry_lan
China
Posts |
Posted - 03/06/2008 : 10:19:21 PM
|
Hi:
If your dataset is large, please send the OPJ to tech@originlab.com.
NOTE that the exponential function is monotone, so it is impossible to fit such peak. I suggest you modify your model. If you want to use the initial values your supervisor suggested, may be you can change the function like:
y = y0 + A1*exp( -abs( (x-x0) )/t1 );
or you can use:
y = y0 + A1*exp( abs( (x-x0) )/t1 );
and then set t1 = -1
Thanks Larry OriginLab Technical Services |
 |
|
|
looker22
Burkina Faso
Posts |
Posted - 03/07/2008 : 01:28:26 AM
|
ok thx again for the quick reply larry_lan !!!
Guess i'll have to ask him which one he wants >.<... U know profs.. they always like you to do things without telling you what they want ... |
 |
|
| |
Topic  |
|