Hi,ALl, I was using origin to do a linear fitting of my data, the results are: Y = A + B * X
Parameter Value Error t-Value Prob>|t| --------------------------------------------------------------------------- A -0.17357 0.14036 -1.2366 0.26244 B 0.89668 0.00236 380.6276 <0.0001 ---------------------------------------------------------------------------
R R-Square(COD) Adj. R-Square Root-MSE(SD) N --------------------------------------------------------------------------- 0.99998 0.99996 0.99995 0.15267 8 ---------------------------------------------------------------------------
Parameter LCI UCI --------------------------------------------------------------------------- A -0.51703 0.16988 B 0.89091 0.90244 --------------------------------------------
because for A, P(Prob>|t|)=0.26244, if I set my significance as 0.05, doe it mean that I should reject the null hypothesis or should I just reject this parameter A but accept B?
Origin's P(Prob>|t|) is used to perform a t-test on each parameter to see whether its value is equal to 0. So in your case, you should just accept the null hypothesis A=0 and reject the null hypothesis B=0.