T O P I C R E V I E W |
misi2096 |
Posted - 12/16/2012 : 1:11:29 PM Hello!
I want to analyze the time-frequency domain of evoked potential oscillations from EEG data with continuous wavelet transform. More specifically I would like to plot it like time (basically timepoints) on X-axis and frequency (pseudo-frequency) in Hz on Y-axis.
Can you tell me how to convert Morlet wavelet scales to frequencies? According to MATLAB documentation I would have to know the central frequency (sometimes referred to as center freq.) of the Morlet wavelet to be able to compute the pseudo-frequencies table. MATLAB states, that the formula is: ps.F = centr.F / ( scale * sampl.period) and for MATLAB's built in Morlet wavelet it states central frequency as 0.8125.
Here you can see the mismatch:
I've read the English documentation but I still don't understand what the "Wave number" parameter stands for when using Morlet wavelets. Does it have something to do with the desired central frequency?
Thank you in advance! |
5 L A T E S T R E P L I E S (Newest First) |
Hideo Fujii |
Posted - 04/21/2015 : 10:24:14 AM For visitors to this thread,
The above link in Penn's post has been changed to:
http://www.originlab.com/doc/Origin-Help/Continuous-WaveTrans
|
Penn |
Posted - 12/17/2012 : 05:03:10 AM Hi,
You can refer to this page for more details about the wave number.
Penn |
misi2096 |
Posted - 12/17/2012 : 02:30:54 AM I see, but can you tell me what the Wave number parameter stands for in the Analysis -> Signal processing -> Wavelet -> Continuous wavelet window when using Morlet wavelet? It is mentioned here also: http://www.originlab.com/www/helponline/Origin/en/programming/mergedProjects/X-Function/X-Function/Cwt.html#Variables
Or can you tell me where did you implant the continuous wavelet analysis feature?
Thank you in advance! |
Penn |
Posted - 12/17/2012 : 02:11:16 AM Hi,
Currently, Origin 9.0 SR1 (or earlier version) does not provide the way to generate the pseudo-frequencies from scales. However, there is already a plan (ID is ORG-5373) to add support for such functionality.
Penn |
misi2096 |
Posted - 12/16/2012 : 1:14:44 PM I'm sorry, I forgot to mention, sampling frequency is 5000 Hz therefore sampling period is 1/5000 = 0.0002 |