| So far, I have been attempting to fit the magnetoconductivity at low temperatures using the HLN equation, but I have not been able to obtain satisfactory results. In HLN fitting for topological materials, the theoretical range of A should be between -1 and 1. However, when applying the equation to my data, the obtained α values are far beyond this range, for example: A = -783.105, L = -8.5103E-9
 The code I have been using is: y = (A * 1.23314709 * 10^-5) * (real_polygamma(0.5 + 1.64557041 * 10^(-16) / (x * L^2), 0) - ln(1.64557041 * 10^(-16) / (x * L^2))).
 The quantity I have been fitting is y = delta_sigma (unit: 1/R = siemens), with x representing the magnetic field (unit: Tesla).
 I would appreciate any insights or suggestions regarding potential mistakes in my approach. Thank you all.
 
 My raw datas are below:
 Magnet field(unit: Tesla)
 9.0000734
 8.5000344
 8.0000727
 7.500057
 7.0000898
 6.5000859
 6.0000746
 5.5000797
 5.0000711
 4.5000879
 4.0000398
 3.5000637
 3.0000895
 2.5000785
 2.0000582
 2.0000537
 1.8000371
 1.6000531
 1.4000832
 1.200041
 1.0000408
 0.8000755
 0.599996
 0.3999749
 0.2000631
 -0.0000023
 -0.2000398
 -0.4000308
 -0.6000263
 -0.8000266
 -1.0000338
 -1.2000387
 -1.4000366
 -1.6000228
 -1.800023
 -2.0000467
 -2.0000676
 -2.4999855
 -3.0000268
 -3.5000473
 -4.0000281
 -4.5000133
 -5.000043
 -5.5000332
 -6.0000375
 -6.5000418
 -7.0000313
 -7.5000313
 -8.0000164
 -8.5000227
 -9.0000242
 
 Delta_sigma(unit:siemens)
 -0.002887489
 -0.002687662
 -0.002485256
 -0.002280469
 -0.002074338
 -0.001868494
 -0.001663777
 -0.001462566
 -0.001266492
 -0.001077444
 -0.000897571
 -0.000729016
 -0.000574062
 -0.000435262
 -0.000315078
 -0.00031482
 -0.000272575
 -0.000233804
 -0.000198404
 -0.000166774
 -0.000138783
 -0.000114215
 -9.2728E-05
 -7.3475E-05
 -5.2651E-05
 0
 -5.43256E-05
 -7.43393E-05
 -9.34855E-05
 -0.000114852
 -0.000139313
 -0.000167332
 -0.000198974
 -0.000234167
 -0.000272964
 -0.000315264
 -0.000315422
 -0.00043529
 -0.000573994
 -0.000728615
 -0.000897118
 -0.001076791
 -0.0012658
 -0.001461805
 -0.001662853
 -0.001867149
 -0.002073067
 -0.002279108
 -0.002483893
 -0.002686309
 -0.002885671
 
 |